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ALMOST OPTIMAL INTERIOR PENALTY DISCONTINUOUS 
APPROXIMATIONS OF SYMMETRIC ELLIPTIC PROBLEMS O N  

NON-MATCHING GRIDS 

R.D. LAZAROV, J.E. PASCIAK, J. SCHOBERL, AND P.S. VASSILEVSKI 

ABSTRACT. We consider an interior penalty discontinuous approximation for sym- 
metric elliptic problems of second order on non-matching grids in this paer. The 
main result is an almost optimal error estimate for the interior penalty approxi- 
mation of the original problem based on the partition of the domain into a finite 
number of subdomains. Further, an error analysis for the finite element approxi- 
mation of the penalty formulation is given. Finally, numerical experiments on a 
series of model second order problems are presented. 

1. INTRODUCTION 

In this paper, we propose and analyze a simple strategy to construct composite 
discretizations of self-adjoint second order elliptic equations on non-matching grids. 
The need for discretizations on non-matching grids is motivated partially from the 
desire for parallel discretization methods (including adaptive) for PDEs, which is a 
much easier task if non-matching grids are allowed across the subdomain boundaries. 
Another situation may arise when different discretizations techniques are utilized in 
different parts of the subdomains and there is no a priori guarantee that the meshes 
will be aligned. 

Our method can be described as interior penalty approximation based on partially 
discontinuous elements. The mortar method is a general technique for handling d i s  
cretizations on non-matching grids. However, our motivation for using the penalty 
approach is that it eliminates the need for additional (Lagrange multiplier or mor- 
tar) spaces. There is a vast number of publications devoted to the mortar finite 
element method as a general strategy for deriving discretization methods on non- 
matching grids. We refer the interested reader to the series of Proceedings of the 
International Conferences on Domain Decomposition Methods cf. e.g. 151, [ll], [ 171 
(for more information see, http://www.ddm.org). 

In the present paper, we assume a model situation when the domain is split 
into a fixed number of non-overlapping subdomains and each subdomain is meshed 
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independently. This is a non-conforming method and the functions are discontinuous 
across the subdomain interfaces. The jump in the values of the functions along these 
interfaces is penalized in the variational formulation, a standard approach in the 
interior penalty method (cf. [2], [4], [14], [22]). For a recent comprehensive survey 
on this subject see f33. An important feature of this approach is that we skip the 
term in the weak formulation that involves the co-normal derivative of the solution 
to the interface boundaries since the latter may lead to non-symmetric discretization 
(cf. [22]) of the original symmetric positive definite problem. An interior penalty 
finite element approximation with optima1 condition number was proposed, studied, 
and tested on various examples in [ZO]. The error estimates derived in [20] were 
suboptimal with a loss of factor hl/'-', 0 < 6 < 1/2  for solutions in the Sobolev 
space H2--b(S2). In this paper we present a refined analysis and get almost optimal 
error estimates for linear finite element and solutions in H2-6((R). In addition, 
we extend the analysis to decompositions with cross points. One can improve the 
accuracy somewhat for problems with smooth solutions by increasing the weight in 
the penalty term with the expense of increased condition number. 

In the case of matching grids, finite element Galerkin method with penalty for a 
class of problems with discontinuous coefficients (interface problem) has been studied 
in [4]. Similarly, in [lo], the interface problem has been addressed by recasting the 
problem as a system of first order (by introducing the gradient of the solution as a 
new vector variable) and applying the least-squares method for the system. Integrals 
of the squared jumps in the scalar and the normal component of the vector functions 
on the interface are added as penalty terms in the least-squares functional. In both 
cases an optimal with respect to the error method leads to a non-optimal condition 
number of the discrete problem. 

Other approaches for handling discretizations on non-matching grids can involve 
different discretizations in the different subdomains. For example, mixed finite el- 
ement method in one subdomain and standard Galerkin on the other (proposed in 
[25] and studied further in [18]), mixed finite element method and discontinuous 
Galerkin method cf. e g ,  [B], or mixed finite element discretizations in both sub- 
domains, cf. e.g., [l], [19]. Similarly, coupling finite volume and Galerkin methods 
has been proposed and studied in [15]. 

The structure of the present paper is as follows. In Section 2, we formulate the 
problem and its discretization. In Section 3, we introduce the primal and dual 
penalty formulations of the problem split into subproblems on nonoverlapping sub- 
domains. In order to get an optimal estimate for the error in Section 4, we introduce 
the mixed formulation of the penalty problem and derive a fundamental a priori er- 
ror estimate for its solution. In Section 5 ,  we analyse the difference between the 
solution of the original problem and the solution of the penalty formulation. The 
error is shown to be of almost optimal order for u E H2-'(S2) for 6 2 0. For meth- 
ods without cross-points the error is oprimal for 1/2 > S > 0. Finally, the finite 
element discretization and its error analysis is presented in Section 6, Numerical 
test illustrating the accuracy of the method are given for two model problems. 
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2. NOTATIONS AND PROBLEM FORMULATION 

In this paper we use the standard notations for Sobolev spaces of functions defined 
in a bounded domain R C Rd, d = 2,3. For example, H"(52) for s integer denotes 
the Hilbert space of functions u defined on St and having generalized derivatives 
up to order s that are square integrable in 0. For non-integer s > 0 the spaces 
are obtained by the real method of interpolation (cf. [21]). Hi(s1) is the space of 
functions in H1(R) which vanish on dR. The-norm of u E H"(S1) is denoted by 
I I ~ l l l ~ , ~ .  We also use the notation Iu l , ,~ for the s-order semi-norm in H"(S1). For the 
traces of functions in H i  (R) on a manifold I? of dimension d - 1 (curves and surfaces) 
and dI' c dR, we will sometimes use the fractional order Sobolev spaces commonly 
denoted by Hii2(r) which is defined to  be the interpolation space halfway between 

For a given Hilbert space H with an inner product (s, - ) H  and corresponding norm 
If - l l H  we denote by H* its dual, i.e. the space of all continuous linear functionals 
on H. we use the fact that (H,',/2(r))* = w1/2(r). 

For a given bounded polygon (polytope) 52, a source term f E L2(Q), and coef- 
ficient matrix a(x)  that is symmetric and uniformly positive definite and bounded 
in Q, we consider the following model boundary value problem in a weak form: find 
u E H t  (R) such that: 

and L2(r) .  

(2.1) A(u,v) = f ( v )  for all v E Ht(R). 

Here 

A(u, V )  = aVu - Vv dx and f (v)  = (f, v)o,n := fv dx. J, 

3. INTERIOR PENALTY FORMULATION 

We shall study a discretization of this problem by the finite element method 
using meshes that generally do not align along certain interfaces. This situation 
may arise when the! domain is split initially into a p nonoverlapping subdomains 
52i, i = 1,. . . , p  and each subdomain is meshed (triangulated) independently of the 
others. We assume that the number of subdomains is fixed and each subdomain is 
a shape regular polyhedron. A model situation of this type for d = 2 is shown on 
Figure 1. We denote by 7~ the interface between two subdomains Ri and Rj and 
by E' the union of all interfaces yij. 
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FIGURE 1. The domain St is partitioned into four subdomains Ri 
i = 1,2,3,4 with interfaces rij; each subdomain is partitioned into 
quadrilateral finite elements independently; P is a cross point 

We define 

a(u, v) := C ( a V u ,  Vv)o,n, := 

c(p,  4) := ( p ,  q)o,r  := J pq  ds, - 

a&, ?I), 

r 

( ~ 7  q)o,yij .- .- J pqds1 
'Yi j 

A u  := [u], 

Here the jump [u] is defined as the difference of the traces of a function u E V on 
yij = Ozi n fij. We specify a "master" side of each interface -yij so on rij the jump is 
defined always as fu] = ulni - uInj, where Qi is the domain from the master side of 
Yij . 

We approximate the original problem (2.1) by the following problem, which we 
further call the interior penalty formulation: Find u, E V such that 

( 3 4  AE(uE7 'p) := a(u,, p) + ~-'c(Au,, Ap) = f(cp), for all 'p E V. 
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Here E is a small parameter which later will be chosen as the mesh size of the finite 
element partition of 0. The problem (3.1) is further called the primal formulation 
to distinguish it from the the mixed formulation introduced in the next section. 

The formulation (3.1) allows discontinuous solutions along the interface r. In 
order to control the size of the jump [u& we have introduced it in the variational 
formulation as a least-squares penalty term with a large parameter €-I. Our goal 
now is to estimate the difference U-U' assuming-that u E H2--b(st)  with 0 5 6 < 1/2. 

The bilinear form A'(., -) defined in (3.1) is symmetric and positive definite. It is 
related to but much simpler than the corresponding discontinuous Galerkin method 
used in [2], [22]. The simplification comes from the fact that we do not have a 
term involving the co-normal derivative aVu f n along the interface r with unit 
normal vector n. This simplification comes at a cost: the proposed approximation 
will have almost optimal order of convergence for linear elements only, in contrast 
to the non-symmetric interior penalty Galerkin method studied in [22], where the 
optimal order is established for continuous finite elements of any degree. However, 
our formulation leads to a symmetric and positive definite problem which is more 
convenient for computational purposes. 

4. STUDY OF THE PRIMAL AND MIXED FORMULATIONS 

In this section, we shall study the solution of (3.1). This problem fits into the fol- 
lowing general abstract class of parameter dependent problems. Let (V, 11 - flv, (., -)v) 
and (Q, 11 - ]Ic, e(., e)) be Hilbert spaces as illustrated earlier. Here the inner product 
(-, .)v defines a norm in V and the norm 11 * I fc  is defined by the inner product e( - ,  e). 
We assume that we are given a continuous symmetric positive semi-definite bilinear 
form a(., .) on V x V and a continuous linear map A : V -+ Q so that 

421,~) 5 I[vl/vllwllv and llAvIlc 5 I[vllv, for all v , w  E V. 
Here and in the rest of the paper we use the signs 5 and 2 to denote inequalities 
with a constant that might depend on various parameters but is independent of e. 

AE(w, w) = a(v, w) + 6-l c(Av, Aw), for all ZI, w E V. 

We assume that the range of A is dense in Q but not necessarily closed. The 
parameter 6 E (0,111 is typically small. We further assume that A1(-, .) gives rise to 
an equivalent norm on V ,  i.e., 

(44 11v11$ 5 A'(v,v) 5 llvl]$, for all E V. 

It easily follows that A'(-, e )  is coercive on V and satisfies 

Next, we define 
- 

llv11$ 5 A'(v,v) 5 E-'\\v)~$, for all v E V. 

be the solution of (3.1) and define the dual variable p ,  f Q by 

( 4 4  pE := E-~Au, .  

Our approach is to reformulate (3.1) as a mixed problem as done in [24]. Let U, 
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We get the mixed system for u, and p,: 

(4.3) 
(4.4) 
Combining equations (4.3) and (4.4), and introducing the product space X ZE V x Q,  
we obtain the mixed variational problem: Find u, E V and p ,  E Q satisfying 

a(u,, v) + c(Av,p,) = f ( v )  for all z1 E V. 
c(Au,, q)  - E e@,, q )  = 0 for all Q E &. 

(4-5) Be((%P€), h 4 ) )  = f ( v )  for a11 (w) E x, 
with the block bilinear form 

(4.6) B'( (w,P~) ,  (v7 Q)) := a(uc, v) + C(Auo 4)  + c ( A v , ~ c )  - ~ c ( ~ e 7  4) .  

The mixed bilinear form is well defined for the limit E = 0. Any solution (u,,p,) of 
(4.5) is in the space 

(4.7) Xo = { (v, 4)  E X : AV = E Q) . 
This space will play an essential role in the analysis of the proposed interior penalty 
method. On the space X f V x Q, we define the norm 

2 1/2 
(4.8) II(U,P)l!e := (IluIK + 4 I P I I C )  

This norm degenerates to a semi-norm for E = 0. The bilinear form Be(-, .)  is 
continuous with parameter dependent bounds for that norm, namely, for (u ,p )  E X 
and (v,q) E X 

BE((% P ) ,  (21% 4 ) )  = 4% 4 + c(A% 4 )  + c(Av,p) - 6 C(P, 4 )  

(4.9) 

On the other hand, Be(-,  .) provides a uniformly continuous mapping from the dual 
of X (with respect to I](., . ) \ l e )  into X. This is formulated in the following theorem: 

Theorem 4.1. Let f and g be continuous linear funct_ionaZ on V and Q respectively. 
Then the extended mixed problem: 
(4.10) 

(4.11) 

B E ( ( w 4  ( v , d )  = f ( 4  + g ( d  f o r  all (74 4 )  E V x Q 
has a unique solution (u,p) E X .  Moreover, 

11412 + E-'llA.ll: + 4IPll: 5 IlfIlL + E-1119112Q". 

Here llfl/v* and 11g11Q* denote the norms of the linear function&. 

Proof, First, we construct a solution by means of the primal problem. Since A : 
V -+ Q is continuous, and g(.) is in &*, the functional g(A-) is continuous on V: 

IdAv)/ 5 b l f Q *  llAvh 5 11911Q* llvllV- 
Let u E V be the solution of 

a(u, v) + c-lc(Au, Av) = f ( v )  + E-'g(Av) for all z1 E V. 
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We use the ellipticity (4.1) of a(-, -) + c(A-, A-) to get 

l]ull$ + E-ljlAu\}: 5 a(u, u) + E-' ~ ( A u ,  Au) 
= f(u) + e-'g(AU) 

5 l l f l tV* IIullV + E-1'2(jg(lQ* E-1'211Aullc 

5 (llfll$* + a911;*)1'2 (ll.ll$ + 41A41:)1'2 - 
Dividing by (Ilull$++~-' / I A z # ) ~ / ~  gives the bound for 21. By the Riesz Representation 
Theorem we define $ E Q such that 

c(S ,d  = dq) for all 4 E Q 
and find that 

p = E-' (Au - 3 ) .  
Clearly, 

IlPll? 5 E-'IlAUtI: + f-1119112Q* 5 l l f l l $ *  + ~-1119112Q*- 

We verify that (u, p )  is a solution of (4.10). Indeed, for all (v, q) E X ,  

B'((u,p), (u, 4 ) )  = a(u, V) + ~ ( A U ,  Q) + ~ ( A v ,  ~ - l ( A u  - 3) )  - EC(E-'(AU - 3) ,  q)  

= a(u, V) + E-'c(Au, Au) - E- 'C(~ ,  Av) + c(#, q)  

= f ( V )  + 9 ( d  

Finally, we prove that the solution is unique. Any solution (u, p )  of the homogenous 
problem satisfies 

0 = B " ( U , P ) ,  (u, - P I )  
= 

2 U ( U ,  U )  + (1 - -) ~ ( A u ,  Au) + 5 ~ ( p ,  p ) .  

U ( U ,  U )  + c(Au, Au) + E ~ ( p ,  p) - E ~ ( p ,  Au) 
E E 

2 

Thus, zero is the only solution of the homogeneousequation and the proof is com- 

We will now demonstrate the gain in using the mixed form. Namely, in Theorem 
4.3 we will show a uniform in 6 > 0 a priori estimate of the solution to the problem 
(4.10). 

plete. 0 

Let us define the norm f l p l l ~ , ~  for p E Q by 

(4.12) 

That this is a norm follows from the assumption that AV is dense in Q. Let Qo 
denote the closure of AV in the norm 11 I~Q,o. In general, I ] . ( ~ Q , o  is a weaker norm 
than ll.llc. By definition, A has a closed range in Q;. In the limit case E = 0 the 
bilinear form B"((u,p), (u, a ) )  is continuous and stable on V x Qo: 
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Theorem 4.2 (Brezzi, see, e.g. [9], Proposition 1.3). The bilinear form 

BO((u,p), (21, Q)) = a(u7 4 + c(Au, 4 )  + c ( A w )  

BO((%P), (v7 4 ) )  5 (ll4l; -I- IIPll~,*)1~2(l141~ + llsll~,o)1'2~ 
is continuous, i.e. 

(4.13) 

and stable, i.e. 

(4.14) 

on the space V x Qo. 

For the case e > 0, we need a norm depending on the parameter E .  We define 
'2 1/2 (4.15) 

This norm is equivalent to I I . f l c  for fixed E > 0, but not necessarily uniformly equiv- 
alent with respect to E since obviously ~llpl l?  5 ljp$. We define the product space 

X = V X Q  

IbIl& := I b l l Q , ~  := ( I I d l i , o  $- Elbll~) 

with the norm 
2 1/2 

(4.16) II(u,P)llx = (ll.rl~ + IIPIIQ) . 
The following theorem states that BE(., +) is bounded in X and satisfies an inf-sup 
condition with a constant independent of E: 

Theorem 4.3. Assume that (4.1) is satisfied. Let Be(., .) and I] - Ilx be defined by 
(4.5) and (4. 16), respectively. Then: 

The  bilinear farm BE(.,  .) is uniformly continuous on K, i.e. 

(4.17) B"((u,p), (v,d> i Il(U,P)llx IKv, dtlx f o r  all (w), (v ,  4)  E x; 
0 The bilinear fo rm Be(+, .) is uniformly stabEe on X, i. e. 

0 the mixed problem BE((u,p), (v,q)) = . f ( ~ >  + g(q) for  all (v,q) E V x Q has 
unique solution fo r  any f E V* and g E Q* and the solution satisfies the a 
priori estimate: 

(4.19) Il(u,p>l)X 5 l / f l lV** -!- 119/1Q** 

Proof. The proof of the continuity follows estimate (4.9) but due to the new stronger 
norm in Q (see, (4.15)) we have an improved estimate for the mixed term: 

Thus we get uniform continuity. 
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We need only verify (4.18). To this end, fix (v, q )  E X. By definition of the norm 
]l.llQ,o, there exists a V E V such that 

We are free to scale V such that 

1141v = Il(rlls,o and c ( K d  ? 11(r11;,0* 

Let (G, j j )  be the unique solution (by Theorem 4.1) of 

(4.20) F ( ( G , @ ) ,  (w, r ) )  = (21, W)V + c(RV, r )  + E c(q, T )  for all (w, T )  E X. 
We will use (G,$) in order to verify (4.18). First, we see that 

(4.21) B'((G,I?), (v, 4 ) )  = (v, 4 v  + c(A.ii, 9) + E c(4, 4 )  
2 ll4l$ + ll9ll&o + E 11411: 

= IKv, 4)112x, 

so that 

Thus, we need only to show that 

Il(%P)llx 5 l l ( %  dllx- 
By the definition of Be(- ,  a )  and (4.20), for all (w,~) E X, 

q ( 6  - +,@), (w, 4) = q(u% (W,T))  - BE(@, o), (w, r)) 

(v, w)v - a(6, w) + € c(q, r) .  

= (v, W ) V  + ~ ( A i j ,  T) + E C ( Q ,  r )  - [a(V, W) + c(A@, T)] 

= 

Applying Theorem 4.1 gives 

116 - ell; + E Itfill: 5 r l ~ l l ;  + IlfitG + E[l&. 

f l42 + E llijll: I5 rl4l; + ll4ll~,o + E Hnll: 
Thus, 

= 11 (% 9) 11:. 
Finally, we need to  estimate I l$l lQ,O. Using (w, 0) in (4.20) gives 

B'((G,p), (w, 0)) u(6, w )  + c(hw,F) = (w,z))y, for all 20 E V. 
Consequently, 
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5. ANALYSIS OF THE INTERIOR PENALTY APPROXIMATION 

In this section, we derive the basic error estimates for the proposed interior penalty 
method (3.1). We present the estimate for the general case when the partition of Q 
into subdomains Ri has "cross-points" (see, Figure 1). For d = 2 the cross-points 
are the end points of the edges ~ i j  that are in-the interior of R. For d = 3 the 
cross-points are the edges of yij that are in the interior of Q. The case of absence 
of cross-point is somewhat simpler and is discussed at the end of this section. 

Here we use some fundamental results from the domain decomposition literature 
(see, e.g. [6, 71). Since all subdomains Qi are shape regular the estimates 

hold for functions 2r E H1(Qi) which vanish on dRi \ -yij. Here vlYiJ is the trace of v 
on yij. We note also that given any aij E HiL'(~ij) ,  there is an extension satisfying 
the above estimates. The following proposition plays a key role in the proof of the 
error estimate for the interior penalty method. 

Proposition 5.1. For any E > 0 and X E L2(r ) ,  XI, E H1/2(yij) the following 
estimate is valid: 

(5-2) 
h j 

The constant c is independent of E but depends on the shape and the number of 
subdomains. 

The proof of this estimate is given at the end of this section. We now prove the 
main result in this section: 

Theorem 5.1. Assume that the solution u of (2.1,) is in H"'(St) for  some 6 E 
[0,1/2). Then 

-1 1-26 (5.3) I1u - U€I/V + 11P - P€llQ I cE1-6(log~ 1 I/ullH2-6(n), 0 5 s 5 1/2. 
Here the norm in Q is defined as in (4.15) and the constant c is independent of E .  

Proof. We first note that the solution u of the problem (2.1) satisfies the identity, 

A'(u, cp) = f(y) + c(aVu - n, hp), for all ip E V, 
where the normal vector n is always pointing outward from the master side of rij. 
Here we have used the fact that the exact solution has continuous normal flux, i.e., 
in particular, [aVu - n]Ir = 0. To simplify the notations, we defhe the function 

6 = a V u - n  on r. 
Further, the penalty solution u, has been defined as a solution to AE(uE, ip )  = f(y). 
Subtracting these two identities we get the following equation for the error e = u-u,: 

A'(e, p) = c(0,Rp) for all 'p E V. 
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In order to  use the a priori estimates of the mixed setting we shall put this 
problem again in a mixed form. Namely, we introduce a new dependent variable 
E :=.uVu + n - c-l Ae := 8 - E-' Ae defined on I' so that the pair (e, E )  satisfies: 

B'((e, E ) ,  (u, 4 ) )  = E @ ,  q )  for all (v, q )  E V x Q. 
The estimate (4.19) will provide a basis for the analysis of the error (e ,  E ) ,  namely, 

(5-4) 

Since IIqllg 2 ~ ~ / ~ l l q 1 1 ~  we easily get 

(5-5) llellv + IPIIQ 5 J;lleIlo,r. 
This estimate is an easy corollary of the set up of the problem but i t  yields an error 
for the interior penalty method of order at most O(E'/'). We can improve it when 
6 is a smoother function. To accomplish this we first apply estimate (5.2) for X = 0 
to  get get: 

Yi j 

Second, we use the interpolation space H1/z-6(vij) ,  0 5 6 5 l /2 ,  between the 
spaces L2(yij) and H1i2(yij) so that 

1-26 
l le l lH1/2-"Y-)  23 5 l l ~ l l ~ ' / 2 ( Y i j )  llQll;:7ij * 

Next, we observe that interpolated norm with 6 E [O, 1/21 between 

Ti j Yi j  

This fact follows from the definition of the real interpolation method [Zl] .  
Finally, for u E H2-'(R), 0 5 S I. 1/2, one can show that 

ll~IlH1/2-q7..) 23 = 11avu - nllH1/2-qYij)-5 l141Hz-qf2i)- 

Interpolating estimates (5.5) (5.6) gives the desired results (5 .3) .  This completes 

In the rest of this section, we give a proof of Proposition 5.1. This follows im- 
mediately from the three lemmas below. The first lemma follows easily from the 
extension noted at the beginning of this section. 

Lemma 5.1. For any given oij E H i r ( T i j )  on all Tij c I' there exists a v E V 
such that 

and 

the proof of the theorem. 

[.IT, = oij 
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Next, for p E L2((yij) we define the norm 

and its dual 

Note that the space Q and its dual have been defined in Section 4. We then have 
the following lemma. 

Lemma 5.2. For all X E &*, 

(5.7) 

Proof. Let p E Q be non-zero. First, we verify that 

Set 8 i j  = aoij where a is chosen such that llGij 

there exists an extension v E V such that 
= (p, G i j ) ~ , ~ ~ ~ .  By Lemma 5.1, 

(rij 

Then, 

'Yi j 

The inequality (5.8) follows. 
It immediately follows from (5.8) that 

(5.9) 
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Proot The proof of this lemma is based on techniques from the analysis of domain 
decomposition preconditioners: We illustrate the proof in the case of three spatial 
dimensions. The two dimensional case is similar. 

Let X be in L2(yij) and S, be a finite element sub-space of Hl(yi j )  of quasi- 
uniform mesh-size E .  The L2-orthogonal projection operator Q onto S, is bounded 
on H1/2(yij) and satisfies 

(5.11) E-1/211A - QAllo,rij + II QAllH1/2(yij) I Cll~l lHl/2(yij) .  

We first split A = (A - QA) + QX, and further decompose the finite element part 

Q A  = A1 + A2 

such that XI = Q A  on D ~ i j  and X I  = 0 on all interior nodes of yij (A2 being the 
remainder vanishing at dyij). 

A simple transformation argument and Lemma 4.2 of [7] gives 

J I A I I I o , T ~ ~  3 ~ 1 ’ 2 1 1 ~ 1 1 1 ~ 2 ( a ~ i j ~  ri cl” (logE-1)1/2 l l Q ~ l l ~ 1 / 2 ~ T i j ) .  

Lemma 4.3 of 171 gives 

Il~z/ljy;f(yij) 5 logE-l l lQAllH1/2(rij) .  

Now we use the above splitting to get 

Further, using the estimate (5.11) we have 
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0 
In the case of no cross points, we can get a slightly better result. In this case 

rij = I? and the assumption stated at the beginning of this section holds. The 
following theorem provides an error estimate in this case. 

Theorem 5.2. In the case of absence of "cross-points" the following estimate holds 
(5.12) 

for u E H"'(SZ), 0 5 S < 1/2. 

Proof. Since there are no "cro~s-points~~ for v E V the jump [VI = hv is in H : t ( r ) .  
Therefore, there is an extension, which satisfies (5.1) so that 

llellv + llE1l~ 5 ~" -611~ l (~~ -~ (n ) -  

This irndies 

so that 

(5.13) llellv flEllQ 5 cl1@1/H$z(q. 

Interpolating (5.5) and (5.13) we get 

llellv + l I E l l Q  5 c1-61}ol~.H1/2-6(r)* 
The result then follows from the trace estimate 

lloll~1/z-~(r) 5 I 1 4 I ~ 2 - 6 ( n )  

which holds for polygonal interface I? (cf. [16]). 

6. FINITE ELEMENT APPROXIMATION OF T H E  PENALTY FORMULATION 

6.1. Finite element formulation and error analysis. Now we disretize the 
problem (3.1) by the finite element method. Each subdomain Szi is meshed inde- 
pendently by a quasi-uniform and shape-regular triangulation and consequently 
the whole domain has a finite element splitting 7 = Uix. Quasi-uniformity of the 
mesh means that for T E 7 and h, = diurn(-r), 17) = rneas(.r) we have 17-1 M h$, 
where d = 2 , 3  is the dimension of the space. We shall use also the global mesh-size 
parameter 

h = max h,. 
r€T 
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Our analysis uses the condition that the mesh 7 is globally quasi-uniform, i.e. 
h = h, for all r E T. We stress again, there is no assumption that along an 
interface rij the triangulations Z: and 7j produce the same mesh. 

Let q , h  be the conforming (see, ([12]) finite element space of piece-wise linear 
functions associated with the triangulation x. Further, let Vh : Vhln, = x,h, for 
i = 1,. . . , p ,  be the finite element space on 7. The functions in Vh are, in general, 
discontinuous across ~ i j .  However, their traces on yij from flZi and Q j  are well- 
defined. 

Let Ih : V 3 Vh be an operator such that for u E H”@(Q) and 0 ,O 5 1: 

Now the interior penalty finite element method reads as: Find u; E Vh such that 

(6-2) 
Obviously, the bilinear form A‘(+,.) is symmetric and positive definite on Vh x 
vh. Therefore, the corresponding finite element “stiffness” matrix is symmetric and 
positive definite and the finite element system has am unique solution. 

Now we derive an error estimate for the finite element interior penalty method. 
According to our construction V = 

A‘(U;, 4) := a(%;, 4) + E-~c(A~L’,, A$) = f ( 4 )  for all 4 E V h .  

H1(Q) n HO(fi) and 

Since the number of subdomains p is finite and all Ri are shape-regular, it follows 
that A1(v,v) is uniformly equivalent to the norm llv11; and the inequality (4.1) 
holds. Therefore, the results of the previous sections are valid and we can apply 
Theorem 5.1. 

The error estimate is almost immediate consequence of Theorem 5.1 and the 
approximation property (6.1) of the space Vh. Indeed, the error u, - U; satisfies the 
orthogonality property - 

A;(uE - ui,$) = 0 for all 4 E Vh. 

Using the coercivity of A€( - ,  .), we get 

11% - .‘,It; 5 AE(U, - UL7 u, - u;) 

4 - A‘(u, - U, U E  - U )  4- AE(u - Ihu, u - Ihu). 

Now the estimates (5.3) and (6.1) produce the following result: 

Ilu - .illv 5 IIU - u,llv + 1 b E  - .;llv 
1-6 lOgE(1-26 + hl-6 + ,-1/2h3/2-6 5 (e I 1 I1 lIB2-S(?) 

for u E H2--S(R), o 5 S < 1/2. 
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The above estimates suggest that for the penalty parameter E M h we get almost 
optimal convergence rate. This result is stated in the following theorem: 

Theorem 6.1. Assume that the solution u ofthe problem (2.1) belongs to H2-’(!2) 
for some 0 5 6 < 1/2. Then the solution uh E Vh of the interior penalty finite 
element method 

ah(%, 4)  + h-lc(Auh, = f(? f o r  all 4 E V h  

exists and satisfies the apriori error estimate 
- u ~ ~ I v  5 hl-’l logh11-26(l.21jtH2-6~~~. 

Moreover, the condition number of the corresponding finite element “stiffness” ma- 
trix is the same as in the case of standard Galerkin method with linear elements, 
namely, 0 ( h-2). 

6.2. Numerical tests. The performance of the proposed penalty method is tested 
on two model examples for the Poisson equation on the unit square with Dirichlet 
boundary conditions. Our finite element implementation handles arbitrary triangu- 
lations of the domain and linear finite elements. 

In the table below we present the error u - uh measured in discrete L2 and H1- 
norms for two test problems for the Poisson equation. The domain is split into four 
equal subdomains that are triangulated independently so that the meshes do not 
match along the interface I?. The test problems are designed to check the accuracy 
of the interior penalty method. The first example has exact solution u(x l , z2)  = 
sin2(2nrcl)sin2 (2x22) so that the normal derivative along the interfaces yij is zero. 
This means that the interior penalty method should have the same accuracy as the 
standard Galerkin method in both L2- and H1-norms. This is readily observed from 
Table 1. The second test problem has exact solution ~ ( 5 1 ,  5 2 )  = 5: + x:. We have 
observed from our computations that the interface is the main contributor to the 
error. Note that the convergence in L2-norm is of first order, while the convergence in 
H1-norm is approximately first order. In the discrete L2 and H1-norms the relative 

- 

TABLE 1. Numerical results for four subdomains with non-matching grids 
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error on the finest (6th) level is 0.03% and 1.95% for the exact solution U ( Z I , Z ~ )  = 
~in~(2~2~)s in~(27r17;2)  and 0.08% and 0.72% for the exact solution u(xl, q) = x:+xg. 

Additional numerical examples are reported in [20], including condition number 
estimates and accuracy results for various test problems. 
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